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Abstract

Vaccines are increasingly targeted toward women of reproductive age, and vaccines to prevent 

influenza and pertussis are recommended during pregnancy. Prelicensure clinical trials typically 

have not included pregnant women, and when they are included, trials cannot detect rare events. 

Thus, postmarketing vaccine safety assessments are necessary. However, analysis of observational 

data requires detailed assessment of potential biases. Using data from 8 Vaccine Safety Datalink 

sites in the United States, we analyzed the association of monovalent H1N1 influenza vaccine 

(MIV) during pregnancy with preterm birth (<37 weeks) and small-for-gestational-age birth (birth 

weight < 10th percentile). The cohort included 46,549 pregnancies during 2009–2010 (40% of 

participants received the MIV). We found potential biases in the vaccine–birth outcome 

association that might occur due to variable access to vaccines, the time-dependent nature of 

exposure to vaccination within pregnancy (immortal time bias), and confounding from baseline 
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differences between vaccinated and unvaccinated women. We found a strong protective effect of 

vaccination on preterm birth (relative risk = 0.79, 95% confidence interval: 0.74, 0.85) when we 

ignored potential biases and no effect when accounted for them (relative risk = 0.91; 95% 

confidence interval: 0.83, 1.0). In contrast, we found no important biases in the association of MIV 

with small-for-gestational-age birth. Investigators conducting studies to evaluate birth outcomes 

after maternal vaccination should use statistical approaches to minimize potential biases.
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Large, linked electronic health care data provide the opportunity to study associations 

between exposures (e.g., medications, vaccinations, medical conditions) and pregnancy 

complications (e.g., acute reactions, maternal complications, birth outcomes) within large 

populations without conducting clinical trials. Observational data have been used 

specifically to study the safety of vaccines administered during pregnancy (1–12). Using 

electronic health care data from the Vaccine Safety Datalink (VSD), we evaluated risks of 

acute reactions, maternal medical conditions, and adverse birth outcomes after maternal 

vaccination (7, 10–13).

Previous observational postlicensure studies of vaccine safety or vaccine effectiveness using 

retrospective data have faced challenges. For example, influenza vaccination was found to be 

effective in reducing risk of pneumonia hospitalization and death in elderly patients. 

However, further work revealed that this observation was biased because of differences in 

health-seeking behaviors (14, 15).

In the present paper, we discuss the potential biases in the associations of maternal MIV 

vaccination with preterm and small-for-gestational-age (SGA) births. These biases may 

occur because of limited access to vaccines during the influenza season, referred as cohort 

truncation bias (16, 17); time-dependent exposure of vaccination, referred to as immortal 

time bias (18); and differences in baseline risk factors according to vaccination status. All of 

these biases have not been fully addressed in recent publications (2–5, 8, 19), and Savitz et 

al. (17) recommended re-analyzing data from existing observational studies. We present 

examples of when these biases occur in the VSD pregnancy cohort, propose analytical 

strategies, and demonstrate the effect of ignoring them. Results are presented for the full 

cohort and by trimester of vaccination.

METHODS

Study population

This study was conducted as part of the VSD, a collaboration between the Centers for 

Disease Control and Prevention’s Immunization Safety Office and several integrated health 

care delivery systems. The VSD includes data on 9.5 million subjects, comprising 3% of the 

US population (20). Data for the present study came from 8 VSD sites: Group Health 

Cooperative (Washington), HealthPartners (Minnesota), Kaiser Permanente Colorado 
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(Colorado), Kaiser Permanente Northwest (Oregon and Washington), Kaiser Permanente 

Northern California (California), Kaiser Permanente Southern California (California), 

Kaiser Permanente Georgia (Georgia), and Kaiser Permanente Hawaii (Hawaii).

Pregnant women enrolled in VSD sites with a pregnancy end date in 2009–2010 were 

identified using a validated algorithm developed by Hornbrook et al. (21) and adapted and 

validated for use in the VSD by Naleway et al. (22). The algorithm sets the pregnancy start 

date as the date of the woman’s estimated last menstrual period using data from birth 

registries or electronic health records. In order to ensure availability of birth outcome data, 

only pregnancies linked to a livebirth were included. For these analyses, women were 

selected if they were 14–49 years of age at delivery and had a livebirth from January 1, 

2009, to December 31, 2010. To ensure that all pregnancies in 2010 would be captured 

irrespective of their gestational age at delivery, pregnancies with a start date on or after the 

seventh study week of 2010 were excluded. In addition, women were required to have 

continuous enrollment, with no more than a 31-day administrative gap from 6 months before 

pregnancy started through 2 months postpartum and with at least 1 outpatient medical claim 

during pregnancy. We also excluded 1) women who received the MIV within 2 weeks of 

their pregnancy start date or within 1 week of the end of the pregnancy because of 

uncertainty about whether vaccination occurred during pregnancy; 2) women who received a 

live vaccine, which is contraindicated during pregnancy; and 3) women whose pregnancies 

resulted in a gestational duration less than 22 weeks or a birth weight below 500 g, which 

likely representing fetal deaths. Detailed information on exclusions is reported in Web 

Figure 1 (available at http://aje.oxfordjournals.org/).

Identification of exposure

We used the VSD vaccine files to identify whether women had received inactivated MIV, 

trivalent influenza vaccine (TIV), or other vaccines during pregnancy. The period of 

observation included 1 season of H1N1 (2009–2010) and 3 seasons of seasonal influenza 

(2008–2009, 2009–2010, and 2010–2011). The data sources for these files include claims- 

and site-based vaccine registries (20). Workplace or pharmacy vaccination were available 

when manually entered by a health care provider based on patient report or when site-based 

registries were supplemented by state vaccine registries. The recorded date of vaccination is 

accurate (20) except when vaccination was administered during a hospitalization, when it 

may be assigned to the admission date. Timing of vaccination was stratified by pregnancy 

trimester: first trimester was defined as less than 14 weeks’ gestation, second trimester was 

defined as 14–28 weeks’ gestation, and third trimester was defined as 28 weeks’ gestation or 

later. Women who were vaccinated at 37 weeks or later were classified as unvaccinated 

because they were no longer at risk of having a preterm birth.

Outcomes

The 2 primary outcomes were preterm birth and SGA birth. Preterm birth was defined as 

delivery from 22 to 37 weeks’ gestation, and SGA birth was defined as a birth weight less 

than the 10th percentile for a given gestational age, based on national averages. Gestational 

age corresponds to the clinical estimate of gestational age. Weights for gestational age 

percentiles were obtained from Oken et al. (23). Their work provides comprehensive 
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reference values for distributions of birth weights at 22–44 completed weeks of gestation 

that were derived from broadly based nationwide data and stratified by sex. Previous work 

has shown data captured in electronic health records and birth registries to be adequate: 

Through chart review, 94% were confirmed to have gestational ages within 14 days of the 

reference values, and 99% were confirmed as having low birth weight (less than 2,500 g) 

(24).

Baseline risk factors

Markers for high-risk pregnancies included pre-existing hypertension, diabetes, 

cardiovascular disease, and renal disease. These conditions were identified from inpatient 

and outpatient International Classification of Diseases, Ninth Revision, codes in electronic 

health care data starting 6 months before pregnancy and continuing through the end of the 

pregnancy. Health care utilization variables included receipt of medical care in the first 

trimester, the Kotelchuck Adequacy of Prenatal Care Utilization Index derived from VSD 

data (25, 26), and the number of hospitalizations during the first 20 weeks of pregnancy. 

Sociodemographic variables included race/ethnicity, maternal age at date of delivery, and 

census tract poverty level, which was defined for each subject as the percent of families in 

their census tract with an income below 150% of the federal poverty level. When a maternal 

address was missing (7%), data on poverty were imputed using the expectation 

maximization model algorithm that included health care utilization variables (27). Periods of 

influenza circulation were derived from FluNet data for 2009–2010 (28).

Analysis

We performed 3 analyses. First, we identified periods during 2009 and 2010 when pregnant 

women had access to vaccination or were exposed to influenza circulation. Second, we 

evaluated whether baseline risk factors during pregnancy were associated with vaccination. 

Third, we performed a sensitivity analysis in which we incorporated several strategies to 

account for potential biases in the vaccine–birth outcome associations.

To identify the period when women had no access to vaccination (MIV or TIV), we plotted 

the distribution of pregnancies according to study week of vaccination, pregnancy start 

week, and delivery week according to vaccination status and pregnancy trimester of 

vaccination. Weeks of the 2 calendar years 2009 and 2010 were combined and counted 

sequentially, and the weeks of the study were numbered. For example, the week of January 

1, 2009, corresponded to week 0, and the week of February 13, 2010, corresponded to week 

58.

To evaluate whether baseline characteristics were associated with vaccine exposure, we 

estimated the standardized difference (difference between means divided by the pooled 

standard deviation). This measure is insensitive to sample size. A standardized difference of 

0.2 or greater in absolute value is considered a large imbalance, and above 0.1 is considered 

meaningful (29). Data on other potential confounders, such as parity, smoking, and alcohol 

use, were not available in VSD files.

We used a propensity adjustment approach to evaluate the potential confounding from 

baseline characteristics in the association between MIV receipt and birth outcome. To 
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construct the propensity score, the following covariates were included: sociodemographic 

variables, VSD site, presence of medical conditions, and health utilization variables. We 

used a generalized additive model with a smooth parameter for maternal age and study week 

of last menstrual period to adequately capture the nonlinear associations. Model fit was 

evaluated using the C statistic and Hosmer-Lemeshow goodness-of-fit test.

To demonstrate the effect of ignoring potential biases when evaluating maternal vaccination 

and birth outcomes, we performed a sensitivity analysis. Analyses were performed for the 

full cohort and stratified by trimester of vaccination. We used 5 stepwise approaches to 

evaluate associations between maternal vaccination and birth outcomes. In the first, we 

ignored all potential biases (naïve approach) and used a Cox regression model to estimate 

the associations. In the case of the vaccine–preterm birth association in the first trimester or 

vaccine–SGA birth association during any point in pregnancy, this method is equivalent to a 

non-censored approach, and the estimates correspond to risk ratios. In the second, we 

accounted for time-dependent vaccine exposure within pregnancy (immortal time bias) using 

a time-dependent covariate Cox model. In the third, in addition to step 2, we excluded 

pregnancies having no access to MIV vaccination. 4) In addition to the factors in model 3, 

we added the propensity score to the model to account for potential imbalance of baseline 

risk factors. Finally, the fifth model, we used model 4 and added H1N1 circulation as a time-

dependent confounder. Measures of association are presented with 95% confidence intervals. 

Analyses were performed using SAS/STAT, version 9.3 (SAS Institute, Inc., Cary, North 

Carolina). This study was approved by the institutional review boards at all participating 

sites and the Centers for Disease Control and Prevention.

RESULTS

Figure 1 presents histograms of study week during which vaccination occurred according to 

trimester of vaccination and vaccine type (MIV or TIV). These histograms show that access 

to MIV and TIV vaccination differed by pregnancy trimester and that the likelihood of 

vaccination depended on the study week. In all pregnancy trimesters, MIV was more likely 

to be given in the first weeks of the vaccination season. The distribution of study week for 

TIV reflects the 3 vaccination seasons captured in our cohort (2008–2009, 2009–2010, and 

2010–11). Vaccination periods for TIV and MIV and H1N1 circulating periods are available 

in Web Table 1.

Figure 2 presents histograms of study week at pregnancy start date according to vaccination 

status, trimester of vaccination, and type of vaccine (MIV or TIV). The distribution of study 

week at pregnancy start date in unvaccinated women was relatively uniform; women 

received MIV only in the first trimester when the pregnancy start date occurred after study 

week 25. Similarly, women received MIV in the second trimester when the pregnancy start 

date occurred after study week 11.

Figure 3 presents histograms of study week at pregnancy end date according to vaccination 

status, trimester of vaccination, and type of vaccine (MIV or TIV). In this case, because 

MIV was available after study week 37, women who had pregnancies with an end date 

before study week 38 had no access to vaccine during pregnancy. Thus, in pregnancies with 
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a start date that occurred in early 2009, vaccination was more likely for those with longer 

gestational period. We classified the period for having no access to vaccination as a 

pregnancy start date before study week 12. This group represented 20% of the cohort.

Likelihood of vaccination due to baseline risk factors

Moderate imbalances in health care utilization, race/ethnicity, and residing in areas with an 

elevated poverty level (standardized difference > 0.1) by vaccination status were observed. 

In addition, there was a large imbalance for receipt of TIV and study week at last menstrual 

period (standardized difference > 0.2) (Table 1)

Model fit of the propensity score had a C statistic = 0.77 and a P value < 0.00001 (8 df) for 

the Hosmer-Lemeshow test. Nonlinear associations were corroborated by the smoothing 

component (partial prediction) plots for maternal age at the end of pregnancy and pregnancy 

start week (Web Figure 2). When ignoring study week during which pregnancy started, 

propensity score properties were poor (C statistic = 0.58), confirming that most of the 

likelihood of MIV receipt is driven by the temporal availability of the vaccine.

Sensitivity analyses to evaluate potential bias of the MIV–birth outcome association

The crude prevalence rates of preterm birth (less than 37 weeks) and SGA birth (<10th 

percentile) by receipt of MIV and trimester of vaccination are presented in Table 2. SGA 

birth rates had small variations ranging from 7.5 to 8.9. In contrast, rates of preterm birth 

varied widely, from 8.2 for those who did not receive MIV to 4.2 in those who were 

vaccinated in the third trimester.

Table 3 presents the results of sensitivity analyses of the MIV–birth outcome associations for 

the full cohort and by trimester of vaccination. For the MIV–preterm birth association in the 

full cohort, the naïve model indicated a protective effect (relative risk (RR) = 0.79; 95% 

confidence interval (CI): 0.74, 0.85; model 1). This protective effect was diluted when 

accounting for the time-dependent MIV exposure (RR = 0.88; 95% CI: 0.82, 0.94; model 2). 

After pregnancies in which the mothers had no access to vaccination were excluded, the 

relative risk was 0.91 (95% CI: 0.84, 0.98; model 3). Further adjustment by propensity score 

and accounting for H1N1 circulation resulted in a null association (RR = 0.91; 95% CI: 

0.83, 1.0; model 5). Analyses specific to first and second trimester vaccination showed a 

protective effect when we ignored all potential biases (in model 1, for the first trimester, RR 

= 0.85, 95% CI: 0.77, 0.93; for the second trimester, RR = 0.87, 95% CI: 0.79, 0.95). When 

women with no access to vaccination were removed from the analyses, the protective effect 

was diluted (in model 3, for the first trimester, RR = 0.88, 95% CI: 0.79, 0.98; for the second 

trimester, RR = 0.90; 95% CI: 0.80, 1.01). Further adjustment for propensity to vaccination 

or H1N1 circulation did not affect the results (models 4 and 5). For third trimester 

vaccination, the time-dependent nature of exposure and access to vaccination affected the 

association estimate (in model 1, RR = 0.63, 95% CI: 0.55, 0.72; in model 3, RR = 0.97, 

95% CI: 0.82, 1.14). Adjustment for propensity to be vaccinated and H1N1 circulation did 

not modify the association (in model 5, RR = 1.0, 95% CI: 0.83, 1.20). MIV–preterm birth 

associations were consistent in all 3 trimesters when we accounted for all potential biases.
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The MIV–SGA birth associations were consistent across all approaches. The risk of SGA 

birth was not higher after MIV vaccination during any point in pregnancy (in model 1, RR = 

0.97, 95% CI: 0.91, 1.03; in model 5, RR = 1.0, 95% CI: 0.93, 1.08). Null results were 

observed for vaccination in the second and third trimesters. A weak protective effect was 

observed for first trimester vaccination (in model 5, RR = 0.90, 95% CI: 0.82, 0.99).

DISCUSSION

In the present retrospective cohort study, we demonstrated that ignoring potential biases can 

strongly affect the observed MIV–preterm birth associations but not MIV–SGA birth 

associations. Sources of bias in the MIV–preterm birth association depended strongly on the 

seasonality or timing of the start of pregnancy and the immortal time bias. When women 

were stratified according to vaccination status, the baseline characteristics addressed in these 

analyses were similar or had only small imbalances, except for pregnancy start week. Our 

results that were based on the fully adjusted models did not indicate an association of 

maternal receipt of MIV with preterm birth; only first trimester vaccination showed an 

association. An MIV–SGA association was not observed for the full cohort, but again, an 

association was observed in the first trimester.

Our results are consistent with those from previous studies (7, 30). In a meta-analysis of 

seasonal and H1N1 vaccines, no evidence of harmful effects with regard to preterm birth 

was found (7, 30). Seven studies (1, 2, 4, 5, 8, 19, 31) indicated a statistically strong 

protective effect for preterm birth, defined as less than 37 weeks gestation, after vaccination. 

The protective effect ranged from a relative risk of 0.40 to a relative risk of 0.86. There were 

no studies in which maternal vaccination was found to be associated with SGA birth. Of the 

studies in which results were presented by trimester of vaccination, there were none in 

which investigators found an association with preterm birth in the first trimester; however, a 

protective association in the third trimester was found in 1 study (8).

Our study complements the work presented by Fell et al. (30). Fell et al. reviewed the design 

heterogeneity (study design and analytical approach) of published articles on the association 

between vaccinations and preterm birth. In the present study, we addressed several of the 

potential biases that can be introduced when analyzing that association. For example, 

focusing on conventional methods, such as multivariable adjustment, propensity methods, 

matching, or exclusion of women who have rare exposure to risk factors, may not be 

sufficient to address other potential biases, such as access to vaccination, seasonal 

confounding, and immortal time bias.

There have been a number of studies in which researchers have addressed access to 

vaccination resulting in a cohort truncation bias (16, 17). The approaches used included 

having access to vaccination in the third trimester (2); having access to vaccination for each 

trimester (6, 7, 31); having a prenatal care visit during the vaccination period (33); or 

matching or stratifying by date of birth (1, 34, 35). However, methods that accounted only 

for the date of birth may not fully control for differential access to vaccination for preterm 

birth, because a longer pregnancy length is associated with having more opportunities to be 

vaccinated. Our present study included detailed analyses to identify calendar periods during 
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which access to vaccination posed a threat to the validity of the results. Only pregnant 

women with longer gestational age would have been vaccinated in the early weeks of the 

vaccination campaign in 2009, which would have primarily affected maternal vaccination in 

the third trimester.

Seasonal confounding has been identified as a potential source of bias in studies of the 

associations of exposures with birth outcomes, with the rate of prematurity and birth weight 

being dependent on season of conception (36, 37), although this potential bias may be only 

an artifact of the cohort truncation bias. Therefore, grouping pregnancies by pregnancy start 

date, care date, or trimester of vaccination may account for the 2 potential biases 

simultaneously. Xu et al. (38) suggested the incorporation of other time-dependent 

confounders through a time-dependent Cox model. In our analysis, in addition to addressing 

the cohort truncation bias, we incorporated H1N1 circulation as a time-dependent covariate 

and found that our results were not affected. In our analysis, we did not adjust for receipt of 

TIV because the differential access to TIV observed in our study period may have 

introduced further bias, as there was little overlap in the periods when both vaccines were 

available.

Bias introduced by time-dependent exposure in analyses of preterm birth outcomes has been 

widely documented (18, 39–41). Time-dependent exposure was addressed in several but not 

all prior studies. Several studies lacked the date of vaccination (3, 4), had incomplete capture 

of vaccination date (8, 42), or used self-reported data (5, 19). In most studies in which the 

vaccination dates were available, investigators censored the vaccination exposure (6–8, 31, 

42, 43), and only in a few studies was a time-dependent covariate method used to analyze 

the vaccine–preterm birth association (5, 34, 43). In other studies, researchers used stratified 

methods to compare with unvaccinated women who had not given birth (8, 44, 45) or 

included an interaction term for date of delivery (31).

Methods used to limit the effect of potential confounding because of imbalance of risk 

factors included exclusions of some subgroups and adjustment methods. Exclusions 

identified are multiple livebirths, not receiving prenatal care, exposure to H1N1, or having 

received treatment for influenza. Prior studies have included sociodemographic factors, the 

presence of comorbid conditions, behavioral factors, and other pregnancy-related 

characteristics as potential confounders. In terms of methods used for adjustment, studies 

have included multivariable adjustment (1, 2, 5, 19, 31, 33, 43, 45, 46), stratified approaches 

(8), propensity score adjustment (32, 34, 42), propensity score matching (2, 3, 6, 7), or other 

matching strategies (47). In most cases, when studies results were reported as crude and 

adjusted associations, results were similar (31, 33). In studies in which results based on 

different adjustment approaches were compared, no differences in associations were found 

(2, 5). In the present study, we found few covariates that were associated with MIV status. 

The only variable driving the performance of the propensity score was calendar date of last 

menstrual period. Thus, our results are consistent with other studies, indicating a minor 

concern for confounding by indication, which likely reflects the routine recommendation of 

vaccination during pregnancy during the period of observation (48).
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Our study had some limitations. We did not have access to data on several potential 

confounders, such as smoking, parity, and prior history of preterm birth. We incorporated a 

broad number of conditions into the propensity to vaccination variable, some of which had a 

weak association with the birth outcomes presented (49). However, propensity approaches 

are appropriate for handling a larger number of potential confounders (50). Our cohort was 

limited to women with continuous insurance coverage and at least 1 outpatient encounter. 

Thus, women with no insurance or interrupted coverage were underrepresented. Our cohort 

excluded pregnancies for which no birth outcomes were available. Most of these pregnancies 

correspond to the 1-year lag in birth registries. Data on vaccination date have been shown to 

be accurate (20), but women who were vaccinated at alternate sites might have been 

misclassified in our cohort. Although our data relied heavily on automated electronic health 

record data and birth registries for assigning gestational age at delivery and birth weight, 

these sources of data in our systems have been found to be valid (24). Accuracy of clinical 

estimate of gestational age in this population may be explained by the wide access to 

ultrasound data in addition to the results of newborn examination (51). Finally, our analyses 

were restricted to livebirths, and thus we were unable to evaluate whether the exclusion of 

stillbirth affected the observed maternal MIV–birth outcome associations.

Conclusions

Our results are consistent with those from other studies in which investigators found no 

increased risk of preterm or SGA birth after maternal H1N1 vaccination. Our analyses 

demonstrated that the apparent protective effects observed in several studies of the 

association between influenza vaccination and preterm birth were attenuated when we 

accounted for temporal confounders. Further studies using retrospective cohorts analyzing 

vaccine–birth outcome associations may benefit by incorporating the analytical techniques 

that we utilized to minimize these potential biases.
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Figure 1. 
Histograms of study week during which vaccination occurred according to trimester of 

vaccination and type of vaccine (monovalent or trivalent), Vaccine Safety Datalink Cohort, 

2009–2010. A) Monovalent influenza vaccine (MIV) in the first trimester; B) MIV in the 

second trimester; C) MIV in the third trimester; D) trivalent influenza vaccine (TIV) in the 

first trimester; E) TIV in the second trimester; and F) TIV in the third trimester.
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Figure 2. 
Histograms of study week of last menstrual period (LMP) date according to vaccination 

status, trimester of vaccination, and type of influenza vaccine (monovalent or trivalent), 

Vaccine Safety Datalink Cohort, 2009–2010. A) Not vaccinated with monovalent influenza 

vaccine (MIV); B) MIV in first the trimester; C) MIV in second the trimester; D) MIV in 

third the trimester; E) not vaccinated with trivalent influenza vaccine (TIV); F) TIV in first 

the trimester; G) TIV in second the trimester; and H) TIV in third the trimester.
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Figure 3. 
Histograms of study week during which delivery occurred according to vaccination status, 

trimester of vaccination, and type of influenza vaccine (monovalent or trivalent), Vaccine 

Safety Datalink Cohort, 2009–2010. A) Not vaccinated with monovalent influenza vaccine 

(MIV); B) MIV in first the trimester; C) MIV in second the trimester; D) MIV in third the 

trimester; E) not vaccinated with trivalent influenza vaccine (TIV); F) TIV in first the 

trimester; G) TIV in second the trimester; and H) TIV in third the trimester.
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Table 2

Crude Prevalence Rates (per 100 Births) of Preterm and Small-for-Gestational-Age Births Among Study 

Participants (n = 46,549) by Monovalent Influenza Vaccine Status, Vaccine Safety Datalink Cohort, 2009–

2010

MIV Status No. of Pregnancies SGA Birth (<10th Percentile) Preterm Birth (<37 Weeks)

No MIV 27,392 8.6 8.2

Received MIV

 Any time during pregnancy 19,157 8.3 6.1

 First trimester 6,788 7.5 6.8

 Second trimester 7,096 8.9 6.9

 Third trimester 5,244 8.5 4.2

Abbreviations: MIV, monovalent influenza vaccine; SGA, small-for-gestational-age.
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